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ABSTRACT
We study the interplay of supersymmetry and certam non-compact invariance
groups in extended supergravxty theories (ESGTs). We use the N = 4 ESGT
to demonst,rate-th__at these symmetries do not commute and exhibit the infinite
dimeesional superinvariance algebra generated by them in the rigid limit. Using
this result, we look for unitary represeetations of the full algebra. We_diseu‘gs; :
the implications of our results in the context of attempts to derive a relativistic

effective gauge theory of elementary particles interpreted as bound states of the

N =8 ESGT.



1. Introduction

At the preseﬁt time extended suﬁergravit_y th‘eoriés (ESGTS) are the most
promising candidates for unifying grévitation with thei.ﬁther fundamental par-
ticle interactions. Even if attempting. sﬁch an ultiméte unification is probably
still pvrematvure, it is clear that the ESGTs are sufficiently stimulating for the
elucidétion of their structure to be worthwhile. »One may gain insighté w‘hich
will prove valuable in the constructlon of the ultimate theory With this aim in
view, we continue in this paper mathematical mvestlgatlons of the symmetrles

of ESGTs.

In their lmportant work on the N = 8 ESGT, Cremmer and Julla have shown
that the extended supergravity theories for N = 5 6, 8 each have an invariance
of the equatxons of motion under a non-compact group 1 The first non-compact
internal symmetry group of this kind was discovered in the N — 4 ESGT by
Cremmer, Ferrara and Scherk.2 The largest on-shell inva:iances of these theories
héve the form Gy X Hj,. where the local invariance group Hlo;: is isomorphic to
the maximal coinpact subgroup Hy of the non-compact global invariance group
Gy Under the action of the non-éoxﬁpact group Hy the vector field stréngths
are transformed into their duals and together tiley form a linear representation of
Gg. The scalar fields are valued on the coset space ‘G/H .Ina manifesily gauge
invariant formultion they transform linearly under both G'gl and H;,., whereas
the spinor fields (s = 1/2,s = 3/2) are all inert under Gg,‘ax.xd transform like
some non-trivial linear representations of Hj,,.1"® In the gauges in which only
physical scalar degrees of freedom appear, scalar and spinors tfahsform non- .
linearly under Gy, which is the only manifest symmetry in this gauge." The

- potential problem with ghosts due to the non-compactness of G is avoided by



the gauging of its maximal compact subgroup. The “gauge fields” associated
with the lnvarlance under Hloc of these theories are composrtes of the scalar

fields as in the two drmensronal CPN models 4

Cremmer and Juha suggested that the composrte gauge ﬁelds of Hloc may
| become dynamlcal on the quantum level 1 Therr suggestlon was motrvated by
analogy with the CPN models in two dlmensmns, whose study in the large N
limit shows that the composrte gauge ﬁelds develop a pole at p = 0 in their prop-
| vagators and become dyuamlcal on the quantum level.4 Nrsslmov and Pachev 6,7
have extended this analysrs to the three dlmensronal (2+1) supersymmetrlc gen-
erallzed non-hnear o-models and shown that in the large N limit these theories
~ havea phase in whlch the composrte gauge ﬁelds and therr superpartners develop
poles at p =0 and become propagatmg, 7 with supersymmetry remammg un-

broken

It is well-known that the fundamental ﬁelds that enter the largest ESGT
(N = 8) in four dlmensrons do not have a r1ch enough structure to accommodate
the basrc ﬁelds of a reahstrc gauge theory of strong, weak and electromagnetic
) mteractlons 8 Thus 1t was thought that some of the ﬁelds entenng such a theory
mrght have to be made composrtes of the fundamental ﬁelds of N = 8 ESGT
" in order to make contact w1th elementary particle physics.% 9,10 The suggestion
of Cremmer and Juhal that the composrte gauge fields of SU(S)I,,C inN =28
ESGT may.become dynarmcal onthe q;uantum level was an.lmportant step in
this direction. | | | o o
Another step in th‘isa directi‘on‘was taken by Maiani and three of the present
authors!! (EGM‘Z) who postulated that in addition to massless gauge fields other

massless bound states (fermionic and bosonic),may: form. The low energy effec-



tive theory could then be a grand unified th’eofy based on SU(5) with three
generations of quarks and leptons.12 Since the dynamics of these theéri& is, as
yet, unknown there is still a lot of arbitrariness in such attempts. Subsequent
work has discussed various alternatives and possible improvements on the origi-

nal EGMZ approach.12-18

In the four dimensional ESGTs one has the option obf ihtroducing additional
couplings to turn the 'élem'entary vector fields into non-Abelian gauge fields while
preserving supersymmetry. For the case of N = 8 ESGT this has'been‘ done
recently by DeWit and Nicolai.l9 This gauging of the vector fields breaks the
non-compact global invariance group. For example, the gauged N = 8 ESGT has
SO(8)1,XSU(8), invariance as opposed to the Eq(7y®SU(8)y,c invariance of the
" ungauged theory. Note, however, that in the special SU(8) gauge containing only
physical degrees of freedom, only SO(8) remains an invariance of the explicitly
gauged theory. The relevance of the gauged theory is not yet'élear and we will

restrict ourselves to t'he'ungauged theory.

EGMZ chose the zero mass shell supergauge multipief of bound states from
‘which to construct a realistic GUT. In addition to the particles needed for é."re;alis-
tic GUT this supergauge multiplet contains many unwanted helicify states.ll 12,20
These unwﬁnted helicity states cannot be made supermassive in a phénotnenblog—
ically acceptable way21 Without introducing a large and poséibly infinite number
of additional supermultiplets of bound states.1315 Thus the question of what
kind of bound states! can be formed in ESGTs is impbfta.nt for attempté at

extracting an effective low energy GUT from them.

There are theoretical arguments indicating that in ESGTs the spectrum of

bound states may be infinitely rich.1>15.22 One these arguments is the analogy



with two and three dimensional generalized o-models. . In the phose of these
theorios'in which the composite gange fields become dynamical thg bound states
form llinear._ representations of the global inva.riance‘group..7'23 This result in two..
dimensional theories may be related to Coleman’s theorem.?* However, this linear
realization of a global symmetry on the bound states, even though it is realized
non-linearly 'on the basic fields of a(2+1) three-dimensional Lagrangian,’
perhaps a hint that the same phenomenon may occur in four dimensional theorm
If this is the case then in ESGTs with non-compact global invariance groups the
bound stat& must come in infinite towers since all the unitary representation of

non-compact groups are infinite dimensional13/15,22.25

Indications for this possibility come from the study of other two-dimensional
theories. Makhankov and Pashaev in their study of the non-linear Schrodinger
equation with a nonecomnqct SU (l,‘ 1) invariance find that the spéctrum of soliton
solutions.is far richer than in the compact case and suggest that this may be
understood in the language of nnitary realizations of the non-compact invariance
group_.'26 Studies of g-models with a non-compact global invariance group??,28
indicate that gauge bosons are not generated dynamically in2or3 dimensions,-
for reasons related to the absence of a dynamically generated mass gap. However, |
no such mass gap is necessary for the gauge fields to become dynamical in 4
dlmensmns Another difficulty i is that thae studnes suggest that the non-compact
global symmetry is spontaneously broken. We do not regard these arguments as

conclusive, and recall the French adage, “Ce n’est que les optimist_es qui fassent

quelque chose dans ce monde.”

There are other suggestions that the physical spectra of ESGTs may. contain

an infinite number of states. For example, Grisaru and Schnitzer have argued



that the scattering amplitudes in ESGTs Reggeize.?? Furthermore, Green and
Schwarz3® have been able to obtain the N = 8 ESGT from a 10 dimensional
superstring theory by dimensiohal reduction in the limit where the radii of the
compéctiﬁed dimensions and the Regge slope parameter approach zero. If the
N = 8ESGT and the dimensionally reduced superstring theory coincide in a cer-
tain limit this would be compatlble with the existence of an 1nﬁmte set of bound
states. In perturbation theory such a comcxdence has been %tabhshed in a limit
with zero Regge slope for the superstrlng theory,.30 However, this theory seems
to give a different mﬁmte spectrum from that of Grisaru and Schmtzer when
the superstnng Regge slope parameter is non-zero. Since the only dunensnonful
parameter in ESGTs is the Planck mass Mp, if they Reggeize as suggwted by -
the work of Grisaru and Schmtzer29 then the slopes of the Regge trajectories
would have to be proportional to l/MP, In thls case the spectrum of massive

states would have to start around t_hAe Planck mass.

From the point of view of the unitary realizations of the non-compact sym-
“metry groups of ESGTs the representations which naturally suggest themselves
~are those that can be constructed in terms of the basic fields in the respective
‘theories. Oscillatorlike unitary rep'resentatiofxs of these groups have already‘ been
constructed using bosonic operators transforming like the vector field 252231 jp
ESGTs. Remarkably enough the Unitéry representations that can be constructed
over the Hilbert spaces of analytic functions of the scalar fields of the ESGTs
are unitarily equivalent to the oscillatorlike unitary répresentations.32 Fermionic
operators which transform non-linearly, as do the fermionic fields of ESGTs,
- suggest in a rather straightforward v}ay the construction of induced represen-

tations in terms of composite operators constructed from fermions and scalars.



_ However, a suitable bound state spectrum must form a countable set of normal-
ized states on which the full superinvariance algebra can be realized. The latter
realization cannot be achieved trivially in terms of arbitrary representations of

the non-compact groups.

" Our aim in this article is to Studj' the larger superinvarianée algebras géner-
ated By sup.ersymme'tr}" and ﬁon-corﬁpact symmetry genérators in ESGTs with-
special emphasis on theirv.uhvi'téry realizations. To minimize algebraic complica-
- tions wé consider the simplést case of N = 4 ESGT with SU(4) X SU (i, l)g; Q
U(4)1. invariance. After s’ummﬁrizing the salient features of this theory we stress
‘the fact that the action of the noh-combact invariance group G in the “spiecial”

'ga'ugeycorresponds t6 a simultaneous action of Gy and in"duce‘d. Hzoc‘traﬁéfofma-

' tions. The genérétors of G do not commute with fﬁe Supersymme,try generators,
as has p;éi'ioﬁsls' been mentioned in Réf.’ 13. We gi*#e here the algebra generated
by G and the supersymmetrf génerators in the global limit. The rigid limit is
~ the asymptotic limit of large spatial coordinates 2 in whicﬁ all fields vanish, ex-
cept for the scalars which tend to some constants and the vierbein which reduces
to the Kronecker 8-function. This rigid algebra has a structure similar to that
- of a Kac-Moody _algebra.33 Justi_as the Kac-Moody algebras: can be thofxgh of .
as extensions _Qf;ord,ina;'y Lie algebras by functions on a circle, our algebra can
be regafded as an extension of an ordinary algebra by functions defined on the
open unit disc. The open unit_ disc enters the picture becguse it is the domain
on which the scalar fields of the theory take their values. We then argue that |
this infinite dimensional superinvariance algebra may have a unitary realization
on the bound states.. With fhis aim in view, we study irréducible uni@ary'x;ep-

resentations of SU(1,1).and igv'o;qtligate how they may be used to represent the



full superinvariance algebra. Our discussion can be extended to higher ESGTs

for N = 5,6,7,8: we comment explicitly on the most interesting case of N = 8.

2. N=14 Exténded Supergravity Theory

There are two different formulations of NV = 4 ESGT which are referred to
as the SO(4) formulation®¥3%! and the SU (4) formulation.Q In the SU(4) formu-
lation; of the six s = 1 fields éntering tbethedry t.hree are most naturally defined
as vectors and the rem-aihin’g three-as-axialv ﬁectors,,while in the SO(4) formu-
lation they are most naturally all taken to be vectors. The non-compact global
on-shell invariance group SU(4) X SU (1,;1) of these theories was first discovered
in the SU(4) formulation.? Below we shall summarize the salient features of the -

SO(4) formulation following references 1 and 34.

The fundamental fields entering the SO(4) formulation are the vierbein e}(z),
o = 3/2 fields ¢i(z)(i = 1,...4), the vector fields A (z) = —A} (i,5 =1...4),
s = 1/2 fields X', a scalar field A(z) and a pseudoscalar field B(z). These two

real scalar degrees of freedom correspond to the special gauge discussed above.

- The Lagrangian L reads as34

1 1 N Co_ . . 1 Lo

i oiuh iy €
f—e x' 7" Dy X‘+§EZ(6,,A6VA+6uB¢9VB)g“,‘U

[

2
- —-e Va(F + H)J,Pt +° e“”"X DL oY1 A0, B

3K2e |
——4——x 5 xADuB—W ¢p3u(A+iB’15)'7 APyt



where
‘a‘-—_:lv _ x2(A2 +‘B2)"'
P =i~ Wil - s B
_ Q;f” = ;;eijkl Prowrxt
H;l{, =g plg, - gzp;:;j - '93 F;’j — 0 I;,LJV : \ . | (2.2)

K

.o .o a - - '.j '
Gy =H}, + 5 [-(1+91)P—92P‘ ‘-..93P‘—94P]‘iy S

+x\/2_a[(l+91)Q—92Q*—-03Q‘—9§Q]:”.. o

and the éymbol * denotes dual with_respect‘to internal indices -

. 1 .
F'; = Eéijlekt ete.

whereas ~ denotes dual with respect to space-time indices -

A |
F”y = -2-€”ypona

. The G; are functions of the scalar fields

L1432

N =T

(2.3)

. 2z

g3 — 192 =1-32

where 2z = k(A + iB). D denotes a supercovariant derivative operation:
a 1 -" ’.

' : (2.4)

b,B=0,B—i \/;xa Pusx
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- and

F;w—F;:'x’/ ‘/20[””‘«#[,,'n,1x w[,,v,,](A+tB'rs)x’]]

(2.5)
- T '/J'] + '“Ukt ¢u (A + '3’75)'/)1/]
The purely bosomc part of the above Lagranglan can be wntten asl ‘
e 0,29"Y0, 2
Losonic == g2*F + 52 (122
L _ (2.6)
BYPN k. -
F ) M;Jkt Fpy
where
MU =2 (Binbe — S ) (glg"” P — gy )
(2.7)

. |
fzfijke(gzg””’”x'+ gaet )

‘with gtvP = ghPg¥> _ ghAgPP. The largest ‘on-shell invariance of the full La-

grangian is SU(4) X SU(1, 1) ® U(4)pe- In the special gauge the scalar fields

are valued on the coset space SU(4) X SU(1,1)/U(4) %SU(I, 1)/U(1) and trans-
form noﬁ-linearly under the global group. When restricted to the special gauge,
the Lagrdngian is invariant (mlyAunAder an SU(1, l) X SU(4) group for which the
diagonal U(1) in SU(1, 1)y and U(4)o. acts on the dimeﬁsionless complex field 2

as
sU —HA+iB) — o =12%P) 8)
(l 1) z=K(A+1B) ,_ 2 =Gzva) (2.8)
with |a)? — |/3|2 =1
The vector field strengths F,w and their duals deﬁned by G = (4k%/e)

‘(6[./6 J,) are transformed into one another under .SU (1,1) and together form

11



" a 2 dimensional ‘spinor -reprosentation As a consequence SU (1, '1) inter;:hangeé
the Bianchi 1dentlt1es a,,(e F 2ad ") == 0 for the vector fields with their equation of
~ motion Bu(eG 7) = 0. The vierbein e, is a singlet of SU (1,1).

As for the'spmor fields in the theory, they undergo mduced local axial U(1)4
rotations under the actxon of SU (l 1). To determlne the U (1) 4 rotations consuier
first the part of the Lagranglan contammg only 8 =0and s = 1/2 fields with

all the other fields set to zero:

6,,::6“ 2

- =i B, i
3 , '
D',, =8y — §75A,, where | T -(2.9)
zal‘z—_‘za#:z'

D | |
A_E_Tl—__zi)_'

The second term in the above L"a’grangian is invariant under the SU(1,1) trans-
fpr_m,ation_ (2.8). In the first tgrm}t}he composite gauge field A, undergoes a galige
transforma_tion;updgr (2.8). - |

SU(1,1): A,,-»A =Ay+i Ay | o
, Ce e (2.10)

B A,, = ezp(-w(a, ﬂ,z 2))8,,ezp(——w(a, ,B,z 2))
where
cap (—iuf B, 2, 8) = gors (2.11)

Thus to make the 'Lagrangiaﬁ invariant s = 1/ 2 fields x* must undergo the U(1)4

rotatiops:

SUY: K vemp(iqule ) @)

12



Similarly the part of the ingrangian-involving- only.s =3/2 and s = 0 fields

1 6,,26“ 2

l, . o
2 uup)‘ ]
. [.30 ) "/)p '7#'75D "’bk +2 -(T_—“)—Q- : e (2.13)

will be invaria.nti under SU(1,1) if the gravitinovﬁelds tp,’;.‘ﬁnd‘.er‘gbvan induced

U(1) 4 rotation

SU(1,1): ‘l/}” — ¢u = ezp( . Q(a,ﬁ, z, 2)'75) d)"; | (2.14)

For the full theory, including vector fields, the SU(1,1) is an invariance only of
the equation of mofion however.

One lmportant feature of this theory, whlch 1t shares w1th the hlgher N >
4 ESGTs, is that the scalar ﬁelds are constrained to have values on a certain
bounded homogeneous domain.. For the N = 4 theory the. z fields:satisfy the .
constraint (1—z2) > 0, i.e. they take values on the open unit disc A in the com-
plex z-plane. The gi'oﬁp .S'U (1,1) under which the ﬁéid 2 undergoes a non-linear
transformation. maps the don;‘-ain A into itself. In the higher.su;ﬁersymmetry
“theories also the non-compact symmetry group act§ as the automorphism group
of the domain on which the scalar ﬁeldsk take their '\}alueé. This complements
36

the theorem®® connecting N = 1 supersymmetry with Kahler manifolds and the

connection®’ between local N = 2 supersymmetry and quaternionic manifolds.

3. Supersymmetry and the Non-compact Invariance Group

One intriguing aspect of ESGTs for 4 < IV < 8 is the fact that they have
some non-compact invariance groups whose generators do not in general com-

- mute with the supersymmetry gehefzitors.:l3’18’22 In this section we will point out

13



- the source of this non-commutativity and construct the infinite dimensional su- - - |

peralgebra generated by s_upersy>mmetry and the non-compact group generators

in the case of the N = 4 ESGT.

We choose the generators of the SU (1,1) group such that they satlsfy the

commutatlon relatlons

_[L_,L+] = 2ily

Lo, L4} = iLs
Lo, L=] = —iL—-

(3.1)

where Lo corresponds to the generator of the U(1) subgroup A general element

of the SU (l 1) group can be repraented in the form
U(,g) = ezp(woLo + wL+ + Q‘Lf').
In a unitary represeutation...the generators must satisfy
=L, =L

- For the 2;din_1ensioual -_represeutation of SU (1', 1) we shall choose |
o3 | L —io. Ly——ios
- where a; = %(01-':1: {02), and denote,
| g = ezp (2 w003 + iw'o_ — twa+)'

=55, er-pr=2

" Now if we consider the scalar field z(z) as an operator we must demand

azxz)+ B

Ulg™)()U (o) =3 45

14

(3.2)

- (3.3)



This implies that

[Lg, 2} = —iz
(L, 2] =iz S  (3.4)
[L+, 2] =1
Similarly for the conjugate operator Z(z) we find
| [Lo,2] =i
(L 2] = —i | (3.5)

{L+; 2] = —t 22
Similarly from the transformation properties of the s = 1/2 fields x' and s =

3/2 fields 1/),‘;:_

Ul )x(2)0Ug) = ezp(i (e B, 2,215) X (2 (3.8)
and | | |
Uls™ )wﬂ(z)v(g)—ezp( ol B, zm)w,,(z) 6
" we obtain | | - |
[0, xi(2)] = % vsxito
[exi@)] = e 69
-[L+, x"(x): = :43 2 ()15 (2)
and '
[£0,vi2)] = §s¥ita)
[povit] = - fpternviia @9
[L+, vide)] = - J2@vita)

15 |



To calculate the commutators of sﬁperSyinmetry generators Q"’-' with the

non-compact symmetry group generators it is simplest to use the action of Q'

[

on the vierbein e2(z) or on the scalar fields z(z), % (z):
@', eb(a)] = ~irr"vi(a)
[QL, z(:c 3 ka(z)xk ()

_QR, Z(x) =0 '_ | (3.10)

@ 2(a)] =0

Q2 (2)| = VEra(a)xile)

wheré a(z) = 1 — 2(z) 2(z). Using the Jacobi identities one finds

[Lo o | :
\ [L+,Q‘ =tim@ ()
| [L—,Q'ﬂ = ;—.zﬁsQ‘

Companng these commutatxon relations with those of the ‘lﬁ“ fields (see Eq. (3.9))

we see that under a global SU(1,1) transformatlon
U(g™)QUg) = ezp(~ jolar 5,2, 215 @ (1)

The 'impor_tant feature of this SU(1,1) is that it does not commute with the
supersymmetric transformations. By mult‘i'ple commutation of the generators
.L+, L_, Ly with the supersymmetry generators Q' bne generates scalar field de-
pendent supersymmetry generators of the form z" z™ Q' or 2" 2™ 450", As sug-

gested in reference 13 it is simplest to study the algebra generated by L4+, L, Ly

16



and Q° in the figid limit, i.e. by going to spatial infinity where all fields vanish
asymptotically except for the scalar fields and the vierbein e’ which simply be-
comes the Kronecker é-function. In this limit the constant scalar fields which we
define as the commuting operators Z and Z commute with Qi. Interpreting the
operators z"(z) ™ (z)Q' as.“ganerators” of generalized supersymmetry trans-
" formations may look puzzling since the gen.erat(')rs of a symmetry must become
mtegrated charges independent of space-txme What we are 1mphc1tly assumlng
is that the correspondmg mtegrated charges which will in general be integrals
over the basic fields and their canomcal momenta, act on the baslc ﬁelds of the
theory in the same way as the Z"Z™ Q. In ganeral, however, thesa generalized
fermionic charges will not be representable in the form of products of the Q°
with scalar field opei'ators. We assume that the algebra of these charges remains

valid, and look for other reprwentatioqs. Defining
Q" =z e, Ppm=2"2"P, (3.20)
we find
{Q?’m’ Q?'q} = 26;7H PP
@™, PpT) =0
R ™
(L4, @™ = inQF ™ — i (m — 375 ) @1

[L_’ Q:},m] —_ 2(1’& + %75) Qn+1,m _ ian’m—l

17



Lo, ™) = i(m —n)Pp™
[Ly, PM™] = inPp~tm — z'mPg»m“ | (3.22)

[L_,P" M| = inPPtL™ — imPp™” -1
The above algebra has the structure of a semx-dlrect product of the SU (1 1) al-
gebra with the algebra of Py’™ and @Q™™. The subalgebra, generated by the gen-
eralized momenta Pn "™ and generaliied supersymmeiry generators Q_”’m looks
very similar to a Kac-Moody exteﬁsion of the‘ algebra of or;iinary P, and Q The
Kac-Moody extension of a Lie algebra L, whose éleménts éﬁtisfy the commutation

relations
[M;, M;] = fi;xMj
where f;j; are the structure constants, has the form

(o]

p)]
modulo some possible Schwmger (or anomaly) terms. One simple reahzatlon of

this algebra is given by the direct product of a representa.tlon of the Lie algebra

L by functions e (n = integer) on the circle:
M‘-"=M,-®e""0 —oco<n< oo

The representation of P,? '™ and Q?’m on the fundamental fields of the N = 4
ESGT corresponds to the direct product of the algebra of P, and @; by polyno-
mials Z" Z™ (n, m integers > 0) defined inside the unit circle. When one goes to
the boundary Z — e then Z* Z™ — ¢!(m=m)8 and the algebra resembles more

closely the form of a Kac-Moody algebra.
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The unitary basic representations of the Kac-Moody algebras (or the so-
called highest weighf representations) are constructed in terms of the vertex
operators of the dual resonance model.38 They involve an anomalous Schwinger
term in the cqmmutation relations, but in our case possible c-number terms which
could arise are restricted by non-trivial Lorentz invariance properties;39 with
the only possibilities being Lorentz scalars or pseudoscalars in {Q:"m , Q;{:q}.
~ Furthermore, when we check lthe Jacobi identities using (3.21, 3.22) we find that

even these Lorentz-allowed Schwinger terms must in fact vanish as a consequence

of Vthé fractional U(1) charge associated with the spinorial charges.

‘In Section 1 we have given the arguments as to why we expect the bound
states to form unitary representations of the non-compact invariance group. The
supersymmetry transformations extend the Lie algebra of the ﬁon-compact group
SU (l; 1) t(l)”l‘;fxe'inﬁnite dimensional algebra given.by Eqgs. (3.21-3.22) in the case
of N = 4 ESGT. Thus we expect the bound states (bosonic and fermionic) to
form a unitary representation of this infinite dimensional algebra. The operators
‘ 1",7' o and:Q""’" can be considered as the Fourier coefficients of generalized mo--
mentum and supersym.me_try generators thai are defined on the open unit disc.
This is analogous to the Fourier expansion of generalized momenta and position

operators in the string theories. 40

4, Unitary Representations of SU(1, 1)

As was pointed out above, one important feature of N = 4 to 8 ESGTs is

the fact that the scalar fields in these theories are constrained to take values in
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what is called a bounded homogeneeus domain. In the case of the N = 4 theory

this is the open unit disc A in the complex plane:
A={d)(1—-22) >0} = (4.1)

If the bonnd states of these theories form linear representations of "the non-
'compact invariance group then the relevant unitary representations must be :
those that can be constructed from the elementary fields appearing in the theo-'
ries. With this aim a class of umtary representations of the non—compact groups

of ESGTs (n == 4 to 8) has been constructed i in terms of boson operator trans- |
forming like the vector fields.25:2231 Ip this section we shall study the construc-

tion of unitary‘ representations of SU(1,1) using the scalar fields 2(z). This
construction of unitary representations of SU (1,»1) on functions defined over the

open unit disc was first éive’n'by Bargmann"1 and eorre's'pond's to some of the

- oldest known tunité,r'y representations of a non-compact grldu’p. Our eventnil aim

will be to attempt to realize the full algebra on these functiens.

As pointed out in Ref. 39, we can represent the full superalgebra if we can
represent the enernters Ly LIy, Z, and Z where Z = lirn;;.’oo‘Z(x).is con-
strained as in (4.1). bne would expect to be able to do this by constructing
functions of Z and Z which are representations of the SU(1,1) algebra. More
generally, we can construct induced reprwentations of SU (1,1) by forming func-
tions of Z and Z which multiply a state transforming under SU(1,1) similarly

to the fermions of ESGTs, namely
Liln >=—inZ|n > |
L|ln>=-inZln> (4.2)

Loln > = inln >
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Then if we construct a state

[Znn> 43

the operators L, and Ly will be repr&éfxted by

—iLy = a - 72 aZ nZ
_iL_'="-aaZ+z2§Z_,.,z‘ | B (4.4)
:¢[(1 (1:?2)%+2 ]

Ly a 9 .10 _
"10=a—§‘ﬁ+"=%+"i
as follows from Eqgs. (3.4) and (3.5), where we have made a change of variables

Z = ¢'%p. We look for a state |m, v, n > which satisfies the eigenvalue equations

/

—ilglm,v,n >=(m+n)my,n> (45
Kimv,g >==v(v-Umuv,n> = (4.6)
where
L L_+L_L . ' ’
K=-toestegg @)

is the SU(1,1) Ca.simii: invariant which takes real values for unitary representa-

tions. We write states in the form

~

lm,v,n > =.ezp‘(—im¢)p|m|(1 - p2)uum,u,,,(p)|r) > _(4 5)

= ezp(—imtﬁ)fm,x;,n(ﬂ)l'l >
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Considering the case m > 0, we find that up ,, must be a solution of the

hypergeometric equation

d%u | du '
P(l—P)d—pg‘*'[’7‘—(07*,‘)34'1)1’]%—0,3/’%-0 o )(}4-9)
. with )
"7v=1+r_v_n' a-'—_—u+t)+m  B=v—q (4.10)

- The solutions are the hypergeometnc series tm v = F (a B;7; p%) which con-

verge for 0 < p? < 1. Since the operator

LML = —LyLo = ~3{Ly, L} ~5[Ls, L]
2 (4.11)
=K+L—I§
has ‘po‘sitive ‘eigenvalues: '
qe=1)—v(v—1) =(¢—v)(t+v—1), o
| (412)

£=m+r)

the elgenvalues of the Casimlr K are restncted41 to three classes: *
1. The principal series: ¥ =5 14 A 6 arbltrary
2.‘ The supplementary series: O < v < 2,8 = n + 1o, with n integer and
O{no<uor1—u<no<l. ‘ |
3. The discrete or bounded series v > 0,¢ 271/' orf{ < —v.

Matrix elements which satisfy the hermiticity requirement

<m+Lv,gLemy, g >=—-<mugll-lm+1v,9> (413

* There are further restrictions! if one wishes to represent the group and not
just the algebra.
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are defined by integration over the invariant measure

dopdp

IT——p—z)—2 (4.14)

- Forv< % , as is the case for the principal and supplementary series, this integral

is divergent fbr p — 1. In addition the hypergeometric series F{(a, 3; ~; p2) is

divergent at p = 1 unless one of the following conditions is fulfilled

(a)

(b)

(c)

Re(fa+p—-7)<0, (4.15)

which cannot be achieved in our case for which

a+ﬂ—d;2u>o T (aa8)
Either a or fis a nonfpositiyé integer:‘

a or ﬂ=-%n :_<_0 3 - "(4.17).

in which case F' (d, B;7; p?) is a polynomial of finite degree. From Eq.
(4.10) we see that (4.17) is achieved by:

Q=ff—n . | (4.18)
Either o = B or B =, in which case | '
Flo,fi0i%) = (1= 92
This is‘achieved by either |
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or

v=n+l+m . | (4.20)

The case (4.20) is not useful since it does not allow the required spectrum of :Lo
eigenvalues for fixed v and 7. The same is true of (4.18) for n # 0. Equation

(4.18) for n = 0 and Eq. (4.19) give, respectively

b=v+m 4  (4210)

t=1-v+m o (421h)

Equationé (4.18, 4.é1a) necessarily correspond to the discrete series since ¢ differs .

from v by a'positi_ve integer. Foi' the case (4.19», 4.21b) we obtain
mpn(p) = p"(1=p*)+ = (1= )1~ (4.22)

which agéin is not square integrable 6ver the measure (4.14) for v > 0.

It is nevertheless possible?? to define state normalization for the principal
series, by forming “wave packets” of solutions in terms of the continuous pa-
rameters A\. The orthonormali-zation condition is expressed in terms of a Dirac

é6-function:

< e,% +iNe, % —iX >=bpbA =) (4.23)
Such a continuous spectrum of states is not appropriate for the problem at hand,
namely a countable spectrum of states which might be identified with the bound
states of N = 4 supergravity. It was shown,39 howevef, by algebraic construction

without explicit reference to the functional form (4.8), that the principal series
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can be used to represent the full supersymmetry and SU(1,1) algebra with a

countable set of states of finite normalization. It was further pointed out that an

'SU(1, 1) singlet cannot be introduced as a discrete state if one wishes to represent

the full superalgebra, but van SU(1,1) singlet can be obtained as the lirnit v—0.
of the supplementany series. It may be that if the full algebra can be repréented
at all on this series, it can be done so only in terms of a continuous spectrum.
Since such. solutions are uninteresting for the discussion of bound states we shall

not pursue them further.

Let us now examine the discrete series which have a finite normalization for

> % when expressed in terms of functions of Z. If for example we take n =0

in'(4.18) we get § =0, F(a,0;7; p) =1, and
fmwn = fmp =(1=p}p™ ; m>0 . (4.24)

These are the functions which are conventioné,lly used to represent the discrete

series in the literature.* It is clear that we cannot represent the operators Z

and Z by simple multiplication (_)n.these functions. Functions corresponding to

_the same value of m but different values of v are not orthogonal because they

are eigenfunctions of different differential operators K{v) corresponding to the

~ choice of n=vin Eqé. (4.5). The orthonormality conditions

< f’,‘V'If,V > = byppbyp0
- | - (4.25)
v >=m=~{t—v,v;n=v > = ezp(—im¢) p"(1 - PVl >

* Sometimes the eigenfunctions of K are taken?!'#3 to be the monomials p™,
with the factor (1 — p)” being absorbed into the definition of the invariant
measure (4.14). This requires a corresponding redefinition of the differential
operators (4.5). -
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are achieved by imposing

<V >=6,, | (4.26)

while integration over ¢ gives é,,,, +. Thus while we may write
Zlty >=|t+1,v> (4.27)

‘we also have
216,y > = ezp(~i(m = 1)) " (1= ) >
(4.28)
=[¢—1,v > +ezp(~i(m — 1)§) fm-rp41lv >,

and we cannot identify ‘t.he last term in (4.28) with the state |¢, v+l >. Solutions
of (4.9) with common 5 and m but different values of v, are eigenfunctions of
the same diﬂ‘erential operator K (q) but with different eigenvalues —v(v+ 1), and
thus necessarily orthogonal, and 6ne might be able to represent the operators Z
and Z by simple multiplication on such functions. However there do not seem to
be any solutions other than (4.24) which are bqth square integrable and possess
the required spectrum of Ly elgenvalues | }

We are therefore led to look for representatlons of the full algebra by meth-
ods of algebraic construction which do not directly exploit the functional forms.
of eigenfunctions of the differential dperators (4.4). As mentioned above one such
solution has been found3® by making the ansatz!? that the actions of the oper-
ators L+ and L_ can be expressed as functions of the actions of the operators
Ly, Z and Z which are at most linear in Lg. Explicitly, we look for solutions | >
| with |
—iLy| > = Z[A(Z Z)Ly + B(Z Z)}| >

© (4.29)
—iL_| > =[A%Z Z) Lo +BYZ2) 2| >

26



7

The solution to vth'evalgebra. defined in (3.1),(3.4) and (3.5), together with

12,2)=0 O (430)
gives
_.,f._‘A|’>=‘5-’-i—‘[> N | .Bj >=(.—-;-—..'.x);| > o
_'witli’} o |
»» zZ|>= l._> . : o _(;.32)

E - Using these results to construct the Casimir operator (4.7) gives = -

ko= (o) (od- )= ()i s

W_hich means that the ansatz (4;29)'r_$tric_ts the Hilbért space to that correspond-
ing to the »principal series of SU(1,1) repraentations., as well as restricting the |
operafors Z and Z to the unit circle, Eq. (4.32). We may now represent the

~ algebra by states |¢,\ >, where we choose some countable set of parameters X

and impose
< NN > = Epbyn
—ilo|le, A > =¢€ex > -
: : (4.34)
ZIEAS>=t+1,x> , .
ZIGN>=|t—-1,\>
Using o T
» | 1 "
—iLy| > = "Z(lo+§+lk)~| >
' (4.35)

—iL_|>=-2Z (!@-.‘T.% -ir)1>
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as follows from (4.29-4.32) we then obtain -

_mmx>=-@+§ngw+hx>
| (4.36)
zgmx>=_@+;4QwaLx> '

It is clear that the ansatz (4.29) is a sufficient cdﬁdi’@yiﬁon'for representing vZ, Z,
Ly, and Lg on the same Hilbert space. It may not bea. necessary one. However,
any solution other than the one given above necessarily involves a spectrum which
has degenerate U(1) eigenvalues. To see this let us assume that we can represent
the algebra on a set of non-degenerate states [¢ >, £ = v+ n with 0 < v <1

| and n an integer, ‘Since_ t:he opeljatgr 2 car;i@ one’un‘it ¢of £, we necessarily have
ZiE>=Clt+1> ___;“ . (a30)
Hermiticity reduires' |
L e+'1:|21e'$=< e.j.z,1£+.1 >*
or

CZle>=Cp_jlt—1> . (4.38)

Commutativity, Eq. (4.30), requires
ZZ1e>=22)t>
or

ICel? = |Co1)? = |C)? (4.39)
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 Thus |C¢| is independent of £. Since operation by Z Z reduces to multiplication by

~ a constant, this operator commutes with Ly and it follows from the commutation

relations (3.4) and (3.5) that |C] = 1; i.e. the unit (:irvcle' is the only SU(1,1)

invariant circle for the variable Z. We may choose a phase convention such that

- “Wenow. define

and from(3:5)

‘we obtain .

which implies

|

‘ ‘C¢.=~l

—iL_|¢ >=djt >

—iL_ Z|e S>S= -_-c'ZL_'I_e >-—¢>

dpyr =dy—1

dy=d-¢

(4.40)

 (4.41)

(4.42)

- (4:43)

Since we have assumed a non-degenera.te U(1) spectrum, the states |€.> either

_, belong to an 1rreduclble representatlon of SU(1,1) of the dlscrete, principal or

supplementary series, or a s_u_perpos;ton of irreducible representations of the dis-

crete series which have no common ¢-values. Then equating the values of the

matrix element

<O —LyL-|e>=|d— ¢ =4t—-1)—v(v-1)

(4.44)



N

as obtained from (4.12) and from (4.43) we find - -
"Red= L Tood=c4i - = l-{- \NM=(1-vp (4.45)
_ 2 2 : 4 A ' v
which correspond to the principal series: v = 1 + i\

" Thus, while we have not shown that the fepreéentat{on (4.34) of the algebra

. (3.1), (3.4), (3-5) and (4.30) is unique, it appears to be a minimal one in the sense

that it is irreducible under SU(1, 1) (except for X\ == 0 in (4.45) in which case it

splits into the two discrete representations ¢ 2 % and £ < —%), while any other

~ representation will necessarily be reducible under SU(1, 1).

5. Unitary Realizations of the Superinvariance Algebra -

Once we have obtained a realization of the algebra defined in Egs. (3.1),
(3.4), (3.5) and (4.31), the full superinvariance algebra is defined by Eqs. (3.1)
and (3.20-3.22). If |¢,v,\ > is a state of U(1) eigenvalue ¢, Casimir —v(v — 1)

and helicity A\, we represent the operators defined in Eq. (3.20) by:
Py, v, > = Pylt+m—n,v,\ > ,

o (5.1) .

. Q™™Me v, N > =Qlt+m—n,v,\ >
Note that because Z is restricted to the unit circle, the doubly infinite set of

operators (n,m = 0,1,2,...,00) is reduced to a simply infinite set
Pn,mv_’ Pa
g a=m—n=0,+1,42,... + 00
Qn m N QG

“These repfeéentatlons w1ll be characterized by infinite series of supermultlplets

charactenzed by a ﬁxed value of Aoz and U (1) eigenvalues |

A A
() =alAmaz) + el

€n(Amaz) =lo(Amaz)+n ; n=0,%1,...+00 (5:2)

0 < (Amaz) <17
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11-18 4, connect supergravity with con-

The representation relevant to attempts
ventional gauge theories is a superposition of the two representations which con-

tain the zero-mass-shell projection of the supercurrent multiplet., namely

3 ' 1.
Amaez = § ’ eo()\maz) =- Z
o - o (5.3)
Amaez =0 ) lo(Amaz) = -1 |

We cannot conclude fhat there may not be other, possibly more-interesting
representations, for example with an infinite spéctn_xm of helicities. However, as
emphasized in Ref. 39, the operators P,','"T' can' be represented if and only 1I VA
and Z can be represented, in which case representations of both P,',' '™ and Q™™
of the above structure follow immediately.

{

6. Extension to Higher Extended S‘ilpergravity Theories

From the point of view of the non-compact symmetry and its compatibility -
with supersymmetry the higher supergravity theories (N = 5,6, 8) havé essen-
tially the same structure as the N = 4 theory. In thesé .highelv- theories the scalar
fields transform non-linearly under the non-compact global invariance group like
cosets SU(5, 1)/U(8), SO(12)*/(U(6) and Eq()/SU(8), respectively. Oné can
choose a gauge in which the scalar ﬁeldé paraméterizing these coset spaces are

represented by some matrix fields z satisfying a constraint of the form
(I-zt2)>0

This implies that, as in the N = 4 theory, the scalar fields Y take their values
in a bounded homogeneous domain and they undergo a generalized linear frac-

‘tional transformation under the non-compact invariance group'that maps the
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domain into itself. This non-compact “automorphism” group of the domain cor-
responds to a combined Gy and an induced Hy,, transform.ation just as in the
" N = 4 case. In the case N = 5 and N = 6 the corresponding domains have
a complex structure and it is well-known that the holomorphic discrete series
unitary 'represéntatioxis of the non-compact groups SU(5,1) and SO(12)* can be
constructed over the Hilbert spaces of analytic functions of the complex vari-
ables (scalar fields) which take values on the respective domains.31:32:45:46 I, the
:N = 8 case the corr_esponding domain does not have a complex structure, which
is a reflection of the fact thaf E7(7) /SU(8) is not a hermitian symmetric space.”

Therefore the extension of the above construction to this case may involve some

novel features.

A syst}ema'tic study of possible representations pf the N = 8 superinvari-
ance algebra in terms of general>class‘es of irreducible representations of E7(7}
has not yet been done, even to the limited, and not entirely conclusive, extent
of the analysis of the N = 4 case presented in this paper. Similarly to the
"N = 4 case, we éaﬁ construct oscillator-liké representations and/or induced
repr%ehtétions in the 70-dimensional épace of the bhysical scalars z of the the-
ory. The oscillator-like '-représentations are equivalent”'46 to those cbtainable
from the Hilbert spaces of analytic functions of the 24 le1 References 32 and
49 it was shown how to construct the oscillator-like unitary representations of
the superinvariance algebras of all ESGTs (N = 4 — 8) using the oscillatér-like
unitary representations of the corresponding non-compact groups in a coherent
state basis labelled by the scalar fields. The coherent state representations of
the non-compact groups 50(12)‘ and E7(7) of the N = 6 and 8 ESGTs are

reducible.3! Thus in the unitary realization of the superinvariance algebra of the
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N = 8 ESGT the representations of Ev(7) that occur for a given helicity are

always reducible.32:49

An alternatrve technfque was used in Ref. 39 where it was shown that it is |
possible to construct a class of representations of the superinvariance algebra for
the most interesting case of N = 8 by making an ansatz4? similar to (4.29) relat-

: ing the non-compact generators Y; elnd the operators Z; as an operator equation
‘vahd on the Hilbert space of those repr&entatrons ‘Their structure is similar to
 those of the SU(1, 1) representatrons displayed i in Sectron 5. The non-compact
.generators Y; can be represented as before by dltferentral operators whose precise
| form depends on the SU(8) transformatron propertres of the inducing represen-
tatlon, srmrlarly to the rl-dependence in Egs. (4 4) Representatrons constructed
. in thrs way are generally not 1rreduc1ble under E7(7) For the special class of rep-

resentatlons constructed in Ref 39, thrs is reﬂected in the fact that states whlch
| transform accordmg to 1rreduclble reprmentatlons of SU (8) are not elgenstates
' " vof the E7(7) Casrmlr operator, except for SU (8) smglets which have elgenvalues

of tlhe form: |
K=Nfg9-v) ; v="4ih , N=2 (1)

When the Casimir operator is represented ‘as a differential operator in the 70-
dimensional space of the asymptotic scalar field operators Z;, ;one finds solutions
to the eigenvalue equations which are SU(8) invariant and whose functional form
. is.again a hypergeometric function multiplied by a monomial. The behavior of the
monomial on the invariant surface 3 Z7 2 = N which bounds the 70-dimensional

volume over which the scalar field: variables are defined? i is again dictated by
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the value of the Ca.simir\:

1

~ZY 62

(1-
- When square integrated over the invariant: metric . - -

°
T (6.3)

- dmz(.l—jlvzziz)
’ . ]

the functions cofrespohding to the eigenvalues (61) have 'divergehce properties
" similar to thése for 'thebrincip‘alv series of SU (1, 1), in-dicati'ng‘ th;it solutions
obtained uéihg the ansatz of the type in Eqgs. (4.30) have particular prlopevrties
* which are independent of the choice of group.
" The re'presénfatiéhs foulid using the abové‘te;:hhique' are in fact of the type
conjectured in Ref. 13 where it was shown that such representations allow un-
wanted par.t‘iclesA to acquire group invariant masses once the SU(8) invariance is
broken to an .ihvali'iance'under.a-, sﬁbgroup no larger than SU(6) (with possibly -
é. lsrimplev éu;")ersymmetfy» surviving as an Aadditic{)nal invariance of the theory).
- Unfortunately these group theoretic considerations are insuﬁicienth-ito determine
what, if any, set of bound states should remain massless, which is relevant to the
more important question of whether the bound s’i:ate'épectruin conjectured11-18
~ as arising from N =8 supérgravity can indeed lead to a realistic effective gauge
. theory of 'present. energy interactions. :

Induced representations which are irreducible under E7(7) can be constructed
‘on spaces smaller than the 70-dimensional one of the scalar fields.4® We have ex-
.- amined briefly examples of such representations and found that if 'e;ch helicity
state of a given supermultiplet is assigned to ‘an irreducible representation of\

E7(7) the states generated by operating successively with the ¥; do not fall into
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supermultiplets. This may indicate that we cannot represent the full algebra
using irreducible representations of this type, although one might be able to -
: 'ﬁndso some set of such 1rreduc1ble Eq() representatxons which would be able
to represent the algebra, possrbly involving an infinite spectrum of spins. In
addition thevZ, can be represented in this case only if they satisfy additional
constraintsr ivnich restrict them to the appropriate smaller dimensional space.
" This "imp‘liee. constraints arn'ong_the generalized P’s and Q's which would have to
be consistent with the N =8 superinvariarice algebra. Such a realization would
* further mean that the 8 ordinary supersymmetry generators do nottransform
linearly under SU(8) but dnly under some subgroup of SU(8). A full investigation
of these questions 'crlearly' requiré some new mathematical techniques for studying
- infinite algebras of the type extracted from the invariance groups of extended _

supergravrty theories.
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